Times Table Strategies

- * Look at both numbers in the calculation and decide which table you know the best. E.g. For 9 x 5 use the 5 times table because it is easier!
- * It doesn't matter which way round you work it out. E.g. 8 x 4 is the same as 4 x 8!
- * For all tables you can count up in multiples of the number.

E.g. $7 \times 3 = 21$ 3... 6... 9... 12... 15... 18...21... Or count in 7s

X 2

- * Double it e.g. $4 \times 2 =$ double 4 = 8
- * Add it to itself e.g. $6 \times 2 = 6 + 6 = 12$
- * The answer will be even i.e.
 it will end in 2, 4, 6, 8 or 0
 * 2 squared = 2 x 2 = 4

X 3

- * Treble it
- * Double the number you're multiplying, then add it once more e.g. for 6 x 3 double 6 and add 6 more
 - * Add it to itself 3 times e.g. $6 \times 3 = 6 + 6 + 6 = 18$

The answer can be odd or even

* If a number is divisible by 3,
then the sum of its digits will also
be divisible by 3 e.g. 12 is divisible

by 3 because 1 + 2 = 3

* $3 \text{ squared} = 3 \times 3 = 9$

X 4

- * Double it twice e.g.6 x 4 = double 6 and double the answer = 24
- * The answer will always be even
- * Use every other one of the 2 times table
 - * $4 \text{ squared} = 4 \times 4 = 16$

X 5

* It will end in 5 or 0

* It is half of the number x10
e.g. 8 x 5 = (8 x 10) ÷ 2 = 40

* 5 squared = 5 x 5 = 25

X 6

* Times by three then double it* It will be even* 6 squared = 6 x 6 = 36

X 7

* 7×4 = double 7 twice * 7×6 = $(7 \times 5) + 7$ 7×9 = $(7 \times 10) - 7$ * 5,6,7,8 which means 56 is 7×8 * If you learn the other times tables, you will only need to remember 7 squared = $7 \times 7 = 49$

X 8

- * Double it (x by 2) three times
- * Times by 4 then double it It will be even
 - * 5,6,7,8 which means 56 is 7 x 8
- * $8 \text{ squared} = 8 \times 8 = 64$

X 9

* The digits of the answer will add to make a multiple of 9 e.g.

$$6 \times 9 = 54$$

 $5 + 4 = 9$

- * When counting in 9s, the tens get bigger by 1 and the units get smaller by 1
- * Times by 10 then take away one lot e.g. for 7×9 , work out 7×10 and then subtract 7
- * Use your fingers; hold your hands in front of you with your fingers spread out. Bend the finger of the number you are multiplying by 9 e.g. for 3 x 9, bend your third finger from the left. This leaves 2 fingers in front of the bent finger and 7 after the bent finger. This gives the answer 27. This works for the 9 times table up to 10 x 9.
- * If a number is divisible by 9, then the sum of its digits will also be divisible by 9 e.g. 108 is divisible by 9 because

$$1 + 0 + 8 = 9$$

* 9 squared = $9 \times 9 = 81$

X 10

- * If it's a whole number, the units digit will be 0
 - * It will be even
- * Move all digits one place to the left
- * $10 \text{ squared} = 10 \times 10 = 100$

X 11

- * Count in 11s
- * The tens digit is the same as the units digit (until 10×11) e.g. $2 \times 11 = 22$, $4 \times 11 = 44$, etc.
- * Times the number by 10, then add the number to it e.g.

for
$$12 \times 11$$
, do $(12 \times 10) + 12 = 132$

* $11 \text{ squared} = 11 \times 11 = 121$

X 12

- * Times by 10, then times by 2 and add them together
- * Double your 6 times table * It will be even
- * $12 \text{ squared} = 12 \times 12 = 144$

$13^2 = 169$	$22^2 = 484$
$14^2 = 196$	$23^2 = 529$
$15^2 = 225$	$24^2 = 576$
$16^2 = 256$	$25^2 = 625$
$17^2 = 289$	$26^2 = 676$
$18^2 = 324$	$27^2 = 729$
$19^2 = 361$	$28^2 = 784$
$20^2 = 400$	$29^2 = 841$
$21^2 = 441$	$30^2 = 900$