
 * Look at both numbers in the

calculation and decide which table you know the best. E.g. For 9×5 use the 5 times table because it is easier!

* It doesn't matter which way round you work it out. E.g. 8×4 is the same

$$
\text { as } 4 \times 8 \text { ! }
$$

* For all tables you can count up in multiples of the number.

$$
\text { E.g. } 7 \times 3=21
$$

3... 6... 9... 12... 15... 18...21... Or count in 7s

X 2

* Double it e.g. $4 \times 2=$ double $4=8$
* Add it to itself e.g. $6 \times 2=$ $6+6=12$
* The answer will be even i.e. it will end in $2,4,6,8$ or 0
* 2 squared $=2 \times 2=4$

X 3

* Treble it
* Double the number you're multiplying, then add it once more e.g. for 6×3 double 6 and add 6 more
* Add it to itself 3 times e.g.
$6 \times 3=6+6+6=18$
The answer can be odd or even
* If a number is divisible by 3 , then the sum of its digits will also be divisible by 3 e.g. 12 is divisible
by 3 because $1+2=3$
* 3 squared $=3 \times 3=9$
* Double it twice e.g. $6 \times 4=$ double 6 and double the answer $=24$
* The answer will always be even
* Use every other one of the 2 times table
* 4 squared $=4 \times 4=16$

$\times 5$

* It will end in 5 or 0
* It is half of the number $\times 10$
e.g. $8 \times 5=(8 \times 10) \div 2=40$
* 5 squared $=5 \times 5=25$

X 6

* Times by three then double it
* It will be even
* 6 squared $=6 \times 6=36$

$\times 7$

* $7 \times 4=$ double 7 twice * $7 \times 6=(7 \times 5)+7$ $7 \times 9=(7 \times 10)-7$
* 5,6,7,8 which means 56 is 7×8
* If you learn the other times tables, you will only need to remember 7 squared $=$ $7 \times 7=49$
* Double it (x by 2) three times
* Times by 4 then double it It will be even
* 5,6,7,8 which means

56 is 7×8

* 8 squared $=8 \times 8=64$

$\times 9$

* The digits of the answer will add to make a multiple of 9 e.g.

$$
\begin{gathered}
6 \times 9=54 \\
5+4=9
\end{gathered}
$$

* When counting in 9 s , the tens get bigger by 1 and the units get smaller by 1
* Times by 10 then take away one lot e.g. for 7×9, work out
7×10 and then subtract 7
* Use your fingers; hold your hands in front of you with your fingers spread out. Bend the finger of the number you are multiplying by 9 e.g. for 3×9, bend your third finger from the left. This leaves 2 fingers in front of the bent finger and 7 after the bent finger. This gives the answer 27. This works for the 9 times table up to 10×9. * If a number is divisible by 9 , then the sum of its digits will also be divisible by 9 e.g. 108 is divisible by 9 because

$$
1+0+8=9
$$

* 9 squared $=9 \times 9=81$
* If it's a whole number, the units digit will be 0
* It will be even
* Move all digits one place to the left
* 10 squared $=10 \times 10=100$

$\times 11$

* Count in 11s
* The tens digit is the same as the units digit (until 10×11) e.g. $2 \times 11=22,4 \times 11=44$, etc.
* Times the number by 10 ,
then add the number to it e.g. for 12×11, do

$$
(12 \times 10)+12=132
$$

* 11 squared $=11 \times 11=121$

$\times 12$

* Times by 10 , then times by 2 and add them together
* Double your 6 times table
* It will be even
* 12 squared $=12 \times 12=144$

$13^{2}=169$
$14^{2}=196$
$15^{2}=225$
$16^{2}=256$
$17^{2}=289$
$18^{2}=324$
$19^{2}=361$
$20^{2}=400$
$21^{2}=441$
:---
$23^{2}=529$
$24^{2}=576$
$25^{2}=625$
$26^{2}=676$
$27^{2}=729$
$28^{2}=784$
$29^{2}=841$
$30^{2}=900$

$22^{2}=484$
$23^{2}=529$
$24^{2}=576$
$25^{2}=625$
$26^{2}=676$
$27^{2}=729$
$28^{2}=784$
$29^{2}=841$
$30^{2}=900$

